
The Role of CloudBees and Kubernetes
in Moving DevOps to the Cloud

CASE STUDY

Contributed by Gurushyam Mony, Former Director, DevOps and Quality
Engineering, Markel

DevOps has revolutionized software development. It empowers organizations
around the world to deliver applications and services at lightning speed by
eliminating bottlenecks in the traditional coding pipeline. Using DevOps
practices, teams can provide value to their company in a fraction of the time.

All teams and organizations, however, are not created equal. How does this
speed and streamlined workflow translate to a multinational operation with
2,000 IT people running dozens of legacy systems?

I’m the director of DevOps and quality engineering at Markel, headquartered
in Glen Allen, Virginia. I joined Markel in August 2017 and was given the
opportunity to streamline software development, releases, deployments
and quality assurance practices across the company. I was excited about
the challenge, but it was indeed a big challenge. Markel is a global specialty
insurance, reinsurance and ILS (insurance-linked securities) firm with 58 offices
in 17 countries. Our specialty products insure items that aren’t covered by
traditional insurance policies, products such as racehorses, diamond-studded
shoes and rock stars’ vintage guitars. In addition, our Markel Ventures division
owns and operates a family of companies outside of insurance.

To achieve our goal of a more streamlined development and deployment process,
I began to work with a team of three full-time associates and contractors from
our specialty and commercial divisions. We immediately embarked on a ruthless
consolidation of tools and elimination of redundancies by assembling behavioral-
driven development and automation frameworks to support software delivery
and releases.

Streamlining DevOps and Quality Control
We first introduced automation tools to four of our teams and then scaled this
initiative to six teams across two divisions. As they began writing scripts to
automate the software development cycle, these coders asked my team for an
orchestrator. We introduced them to the open source server-based version of
Jenkins. We also started promoting Jenkins to Markel’s nascent DevOps team as
a centralized tool for software builds and releases.

Within a year of rolling out Jenkins, we had become victims of our own
success. By August 2018, we had one massive Jenkins platform for all our test
engineering and build automation. What started as weekly runs of software

Industry
Insurance

Geography
Global

Product
CloudBees CI

“From the beginning, we felt that
CloudBees was committed to our
success. We knew we could reach out
if we got stuck, and they would point
us in the right direction—which saved
us a lot of time and frustration.”

Gurushyam Mony
Former Director, DevOps and Quality
Engineering
Markel

releases had grown into 22,000 build pipelines running on
a 19-node Jenkins server farm. We also pushed out dozens
of integrations into testing tools such as Cucumber, Pester,
Specflow, Test Complete and Behave. Over time, DevOps and
quality engineering teams had merged into a single entity,
and today, my team comprises 12 polyglot full-time engineers
supporting DevOps services centrally for Markel IT teams.

In some ways, we were doing great—but we had lost sight of our
initial goal. We no longer helped our developers build consistent
DevOps practices. Instead, we had become full-time integrators,
pursuing tools to add into our Jenkins platform.

We were bogged down in build requests and had no visibility
into our Jenkins farm productivity and performance. There was
another round with sprawl of practices and tools. The logs were
of various schemas, and consistency suffered when trying to
mine them for intelligence. The result was a semi-disconnected
value stream.

We Needed to Move to the Cloud
There was no way my team could keep up with the growing
number of tools and build requests. We had written a ton of
integration code, and our developers were using a plethora of
shared libraries. The sheer volume of pipelines was crushing our
infrastructure, and we could not scale our physical servers to
meet demand. The next logical step was moving our DevOps
environment to the cloud.

We started to experiment with Jenkins X, the cloud-based open
source version of Jenkins, but our engineering team couldn’t
handle the workload necessary to consolidate practices across
Markel’s many IT divisions. We didn’t have the time or human
resources to manually process every integration request and set
up every tool needed by dozens of application teams worldwide.

With Jenkins X, my team had to authorize and authenticate
every master server, which took a lot of time. Our applications
engineers couldn’t spin up a new master, and we weren’t in a
position to ask them to learn Jenkins X themselves so they could
set one up or maintain their pipelines. We wanted to automate
this and other processes to accelerate more teams to the cloud.

That’s why I started looking at CloudBees CI. I had a hunch it
was going to make our deployment processes easier and get
our platform established faster. We also figured it would allow
for application teams to operate in more of a self-service mode,
rather than leaning on the DevOps team.

CloudBees provided all the capabilities we needed without having
to build them ourselves. Given the complexity of engineering
required for an organization as large as Markel, this was a huge
weight lifted from our shoulders.

Piloting and Training
We rolled out a CloudBees CI pilot in April 2020. Our initial
agreement covered 25 users who could spin up master servers
and use the platform on Microsoft Azure using the power of
Azure Kubernetes Services. This setup provided one immediate
upgrade: We could now use Kubernetes to automate the
creation of containers instead of constantly engineering new
ones in Jenkins. The team had to refactor and re-engineer our
approach to automation from the ground up.

The team had already launched centers for enablement and
excellence within Markel for various training purposes. We didn’t
have a formal training process, though, and we’d been using our
own compilation of ad hoc learning materials. Our CloudBees
CI subscription gave us access to their expansive educational
resources, including CloudBees University online classes and
personal training from the company’s experts.

When we rolled out the pilot, we began to enroll some of our
associates in the CloudBees University courses right away.
We also invited CloudBees solutions architects to sit in on our
weekly dojo sessions and help us overcome challenges from

“CloudBees provided all the
capabilities we needed without
having to build them ourselves.

Given the complexity of engineering
required for an organization as large
as Markel, this was a huge weight

lifted from our shoulders.”

– Gurushyam Mony, Former Director,
DevOps and Quality Engineering

the app dev teams. It’s one thing to learn peer to peer, but
having your solutions provider sit in your training sessions takes
education to another level. These dojo sessions were about more
than learning the platform. They helped build a relationship with
CloudBees, and all of our equal contributions were a major factor
in our acceleration journey.

From the beginning, we felt that CloudBees was committed to our
success. We knew we could reach out if we got stuck, and they
would point us in the right direction—which saved us a lot of time
and frustration. Our relationship with CloudBees is probably the
strongest among all of our other partners and vendors, largely
because these sessions fostered such excitement and honest
exchange that we all moved faster.

Our Air Lift Strategy
To make our move to the cloud, we started by securing our
production environment and optimizing our storage and
security. Within three months, we launched a beta version of the
platform and opened it up to four teams. Our goal was to burden
the teams as little as possible, so we asked them to focus on
deliverables while we worried about moving their infrastructure
to the cloud.

We referred to this as our ‘air lift’ strategy. We went to teams
who were using Jenkins pipelines on-premise, and we moved
their operations to the cloud. We made the transition as painless
as possible by transferring their existing tools and processes
from physical servers to Azure instead of forcing them to use an
entirely new environment.

By shifting their activities to CloudBees, we lifted them to the
next level, and we started to see some dramatic improvements in
terms of build/deployment speed and throughput.

Immediate Returns and
Real-Time Visibility
Within weeks of adopting CloudBees CI, one of our teams
began to use the power of CloudBees on Kubernetes to
reduce the compilation time of our global reinsurance system’s
codebase. Every change to this codebase required a 25-minute
build on Jenkins but was ready in just four minutes with
CloudBees CI. Multiply that time savings by 30 teams and dozens
of developers across four divisions, and we save thousands of
hours every month.

CloudBees CI has also given us actionable metrics and real-time
visibility into our processes. We can now see what’s going on
“under the hood” and use this information to prevent and resolve
issues. When we were using an open source stack, our Jenkins
platform would go down every Wednesday and Thursday. We
saw the same incident ticket week after week, and we established
a pattern of putting out the fire without the ability to fully
understand the underlying problem as we were abstracted away
from the infrastructure and had to rely on custom monitoring to
find root causes.

As it turns out, one of Markel’s underwriting application teams
generates tens of thousands of builds on Wednesdays and
Thursdays, which requires massive Jenkins resources. We
discerned the issue with CloudBees CI because we can now see
how everyone is using the platform in real time, and we can spin
up extra compute capacity on the fly to handle the extra load
getting into more of predictive workload management for the
build orchestration engines.

“Every change to this codebase
required a 25-minute build on

Jenkins but was ready in just four
minutes with CloudBees CI.”

– Gurushyam Mony, Former Director,
DevOps and Quality Engineering

We didn’t have this type of visibility or scalability before. Seeing
it in action was eye-opening, and we were eager to push our
CloudBees CI adoption far beyond the 25-user pilot project.

Accelerating and Increasing
Adoption
To accelerate and increase the adoption of CloudBees CI, we
decided to use blueprints and patterns. Instead of chasing
application teams and asking them to move to the cloud, we
simply mirror their open source environments on Azure. We
go into their codebase, abstract their build solution, add on
our blueprint recipes, and all of sudden, they are operating
on the cloud. We had to do this exercise for Java, Python and
Node projects as well. These teams can then run their builds
on-premise and on the cloud simultaneously to compare and
contrast the two systems. Instead of touting the virtues of
CloudBees CI, we let them see the platform in action and judge
for themselves. Now, they come to us requesting upgraded
features instead of us having to ask creating a ‘pull’ vs. ‘push’
model.

We began our transition to CloudBees CI from the bottom
up. We went to our application teams, generated excitement
through our Center for Enablement forums/meetings, and
guided our developers toward those “Aha!” moments that let
them experience the advantages of a cloud-based DevOps
environment. That organic approach was successful, but as
adoption grew, we embraced a top-down strategy as well.

Markel has dozens of legacy platforms that continue to generate
substantial revenues for the company. The app dev teams
managing these platforms sometimes don’t get to spend time
re-engineering nor realize the need to upgrade their tools, and
sharing success stories does only little to sway them. Our strategy
there is to firmly establish expectations: CloudBees CI is the new
standard and we expect them to move to Azure next year. We
want to focus on supporting one cutting-edge platform instead of
splitting our time and attention between multiple systems, some
of which are already obsolete given the recent explosion of cloud-
native design paradigms.

Philosophy in Action
Markel’s application teams have quickly transitioned from a
traditional on-premise Jenkins environment to a cloud-based
containerized CloudBees CI platform running on containerized
Kubernetes clusters. My DevOps and quality engineering team
has created an easy-to-follow upgrade path for our app dev
teams and they are now free to focus on improving their value
streams, instead of integrating solutions into their pipelines.

We have modernized our DevOps environment and supercharged
our CI/CD pipelines in a fraction of the time it would have taken
using an open source solution, and we have leapfrogged a few
steps along the way. Despite our size, we turned the DevOps
philosophy on ourselves—and we’re much better for it.

“We have modernized our DevOps
environment and supercharged our CI/
CD pipelines in a fraction of the time it
would have taken using an open source
solution, and we have leapfrogged a

few steps along the way.”
– Gurushyam Mony, Former Director,

DevOps and Quality Engineering

CloudBees CI is built on top of Jenkins, an independent community project. Read more about Jenkins at: www.cloudbees.com/jenkins/about

© 2022 CloudBees, Inc., CloudBees® and the Infinity logo® are registered trademarks of CloudBees, Inc. in the United States and may be
registered in other countries. Other products or brand names may be trademarks or registered trademarks of CloudBees, Inc. or their
respective holders.

0122v00

CloudBees, Inc.
4 North Second Street | Suite 1270

San Jose, CA 95113
United States

www.cloudbees.com
info@cloudbees.com

