
EBOOK

How Jenkins® Admins
Can Provide Scalable CI for
Software Delivery Teams

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 2

That's why simply deploying CI software isn't enough to maximize
the value that this approach brings to the business. Admins who
manage CI pipelines must also take steps to ensure that the
processes for deploying, scaling and managing those pipelines are
as efficient as possible.

This eBook provides guidance on achieving that goal. By walking
through the most common pain points that Jenkins admins face
when setting up CI pipelines, then highlighting CloudBees
features that mitigate those challenges, we'll explain how
businesses can make the most of CI by ensuring pipeline
scalability and manageability.

As you'll learn, by investing in pipeline management tools and
practices that make pipeline administration as efficient as
possible, everyone benefits—the admins who manage pipelines,
the developers who depend on them, and the business as a whole.
This way, CI becomes a vehicle of value creation rather than a
cause or delays of inconsistency in software delivery operations.

It's One Thing to Set up a Continuous
Integration (CI) Pipeline for Your Developers.
It's quite another to create CI pipelines that can
scale seamlessly and are easy to manage.

Admins who manage
CI pipelines must also take

steps to ensure that the
processes for deploying,

scaling, and managing
those pipelines are as
efficient as possible.

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 3

The Benefits of Scalable and Manageable CI
Before diving into the top CI administration pain points and solutions, let's discuss why having
efficient CI is so critical for the success of all stakeholders.

When your pipelines can scale and are easy to manage, your developers benefit in several ways:

Tightening CI security

Pipelines that can be scaled and managed efficiently are consistent and predictable pipelines. By
extension, they are secure. The less manual work that is required to set up or update a pipeline, the
lower the risk that secrets will be exposed to the wrong stakeholders, or that admins will accidentally
configure the wrong access controls.

Ensuring scalable teams

When pipelines are easy to deploy, manage and scale, development teams can add or remove users
quickly. That's important because individual developers often join or leave projects, and the team
doesn't want to delay development operations while it waits for admins to update CI software to reflect
team changes.

Avoiding needless bureaucracy

The less time it takes for shared services admins to set up a new pipeline or modify an existing one, the
easier it is for developers to request changes. In turn, developers get to spend more time coding, and
less time navigating enterprise bureaucracy in order to get the pipelines they need.

In short, efficient pipeline management and scalability
translates to a smoother, more flexible, and more
secure software delivery experience for developers.
In a similar fashion, pipeline admins waste less time
applying manual changes or performing redundant
tasks. They also become more productive, and their
jobs are more enjoyable because they can automate
tedious pipeline management processes.

Finally, the business as a whole benefits when both
developers and shared services admins are as
productive and satisfied as they can be. With
well-managed pipelines, developers and admins can
focus on creating value and innovation for the
business, rather than troubleshooting pipeline issues
or navigating inefficient pipeline admin processes.

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 4

5

The Top Pain
Points in Jenkins CI
Administration
To unlock the full potential of CI, admins responsible
for pipeline deployment and management must avoid
the most common challenges that get in the way of
efficient CI. Here's a walkthrough of those challenges,
and how CloudBees can help.

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 6

Challenge 1:
Slow Pipeline Setup
Setting up pipelines can be one of the biggest
drains on efficiency. If admins have to create each
pipeline that developers need from scratch,
they'll spend enormous time configuring
pipelines. They're also likely to end up with
pipelines that are inconsistent and unpredictable,
because the pipelines won't be configured in a
uniform way based on centralized standards.

CloudBees addresses this challenge with
Pipeline Templates and Pipeline Template
Catalogs. Using these features, admins can
define pipelines using code, then make those
pipelines available to whichever developers
or development teams need to use them.

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 7

The templates are defined using simple YAML files. For instance,
here's a Pipeline Template for a basic Java app:

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 8

After creating a Pipeline Template, admins can create a separate catalog.yaml to
share the template. For example, here's what the catalog file might look like for a
template shared by front end development teams working on a customer portal:

Pipeline Templates and Pipeline Template Catalogs mean that admins don't have
to reinvent the wheel each time a development team needs a new pipeline. They
can instead reuse pipelines they've already created by making the templates easily
available through the catalog. The result is much less time spent by admins in
creating pipelines, and much less effort on the part of developers to find and
deploy the pipelines they need.

version: 1
type: pipeline-template-catalog
name: customerPortalFrontendTeamCatalog
displayName: Shared Template Catalog for Teams Working on the Customer Portal

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 9

Typically, admins want to give each
development team or project its own CI
instance. A common challenge that admins
face, however, is the risk that each instance is
configured differently. If the instances are set
up separately and manually, there's a good
chance that their configurations won't be
consistent. Even if you do manage to set up
all of your instances in a uniform way initially,
changes that your developers request over
time may lead to configuration drift, resulting
in inconsistent instances.

With CloudBees, you can mitigate this
challenge by taking advantage of
Configuration as Code (CasC). CasC captures
the configuration of each of your Jenkins
instances (known in CloudBees as managed
controllers) and defines it as human-readable
configuration files.

Challenge 2:
Maintaining Instance Consistency

In this way, CasC solves two key
challenges related to achieving
instance consistency:

1. Apply new instances using code.
This makes it fast and easy to
reproduce identical instances across
your enterprise environment.

2. Instance configurations can be
managed as code, which means you
can version it, test it, and validate it.
Code-based configuration makes it
much easier to identify
configuration inconsistencies, as
well as track how your instance
configurations change over time.

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 10

The core of CasC configuration data is the jenkins.yaml file,
which defines the Jenkins configuration of each instance. For
example, the file might include a credentials configuration
like the following:

In addition, CasC includes several other YAML files. Beyond
bundle.yaml, which defines the CasC configuration files
themselves, you can optionally create files that define other
instance configuration data, such as rbac.yaml (which defines
root-level RBAC configuration for individual managed
controllers) and plugins.yaml (which defines which plugins to
install or update on managed controllers).

Example CasC configuration bundle with items
Example bundle.yaml file

id: “bundle-1”
version: “1”
apiVersion: “1”
description: “My CloudBees Configuration as
Code (CasC) bundle”
allowCapExceptions: true
availabilityPattern: “folder1/.*”
parent: “bundle-global”
jcasc:
 - “jenkins.yaml”
jcascMergeStrategy: “error0nConflict”
plugins:
 - “plugins.yaml”
catalog:
 - “plugins-catalog.yaml”
items:
 - ”items.yaml”
rbac:
 - “rbac.yaml”
variables:
 -”variables.yaml”

credentials:
system:
- credentials:
- string:
description: "GitHub PAT from JCasC - secret text"
id: "cbdays-github-token-secret"
scope: GLOBAL
secret: "{AQAAABAAAAAwhY0iqxnrlWCCLvk+2TLChLxlT}"

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 11

Challenge 3: Maintaining Pipeline
Governance Standards

When a CI workflow fails to run properly, it
threatens to disrupt not only the operations of
whichever team depended on it, but also other
teams, whose pipelines may be negatively
impacted by the buggy pipeline. For this
reason, pipeline admins must take steps to
ensure that they can identify and address
situations where pipeline execution does not
conform to organizational standards. They
must also detect pipelines that violate
regulatory requirements.

One way to do this is to monitor each pipeline as it
runs. But that, of course, would require
tremendous effort. It's not practical if you have
dozens or more pipelines across your organization.

That's why CloudBees provides Pipeline Policies.
Pipeline Policies let admins define runtime
validations that are performed automatically on
both scripted and declarative pipelines. Using
YAML, admins can impose conditions that govern
pipelines at runtime, and automatically take action
when pipelines violate the rules.

For example, consider the following policy:
cloudbees-pipeline-policies:
config:
policies:
- action: "warning"
customMessage: "Please check your pipeline
as it should use less than 20m in our infra"
description: "This policy helps to reduce
the use of agent for a long time"
filter: "acme/dev-team/*"
name: "Avoid build running for more than 20m"
rules:
- "pausedActionInAgentRule"
- entirePipelineTimeoutRule:
maxTime: 20
- agentTimeoutRule:
maxTime: 20
- pausedActionTimeoutRule:
maxTime: 20

This policy will trigger a warning
message in the event that the entire
pipeline or a pipeline agent times out for
more than 20 minutes, or if there is a
paused action for more than 20 minutes.
The policy could alternatively be
configured with action: "fail", which
would stop the build completely.

Using a policy like this, admins can
prevent execution delays from one
pipeline's instability affecting other
pipelines. They can also automatically
warn developers about pipelines that
are not executing as required. And they
can do all of this without having to
monitor each pipeline manually, or
generate feedback by hand when
something goes wrong during pipeline
execution.

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 12

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 13

Admins typically don't want every developer in their
organization to have complete access to and control over every
resource in a CI pipeline. Instead, they want to configure access
rights granularly, such that a developer can view build jobs but
not trigger them, for example. They may also want an
individual developer to have one set of permissions for one CI
instance, but a different set for a different instance.

CloudBees makes granular access control rights easy to
enforce using a role-based access control (RBAC) model. As
noted above, the CasC bundles that CloudBees can generate
for CI instances can optionally include a rbac.yaml file, which
defines access rights in a granular fashion. For example - the
RBAC yaml file could look like this:

Challenge 4:
Enforcing Access Controls

13

removeStrategy:
rbac: "SYNC"
roles:
- name: administer
permissions:
- hudson.model.Hudson.Administer
- name: developer
permissions:
- hudson.model.Hudson.Read
- hudson.model.Item.Read
- hudson.model.Item.Create
- hudson.model.Item.Configure
filterable: "true"
- name: browser
permissions:
- hudson.model.Hudson.Read
- hudson.model.Item.Read
filterable: "true"
- name: authenticated
filterable: "true"
permissions:
- hudson.model.Hudson.Read
groups:
- name: Administrators

roles:
- name: administer
grantedAt: current
members:
users:
- admin
external_groups:
- ${external_admin_group}
- name: Developers
roles:
- name: developer
members:
users:
- developer
internal_groups:
- "some-other-group"
external_groups:
- "ldap-cb-developers"
- name: Browsers
roles:
- name: browser
members:
users:
- read

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 14

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 15

When applied as part of a CasC bundle, a
rbac.yaml file like this allows admins to
enforce a consistent set of granular access
control permissions across all of the CI
instances they manage.
Note, too, that permissions can also be
managed through the CloudBees Operations
Center, for admins who prefer
a graphical user interface (GUI):

Enhance Software Delivery
Operations and Execute on
Scalable CI

Creating pipelines that are easy to manage and scale is hard—if you
rely on manual configuration processes and workflows, that is.

But with CloudBees, you can automate and streamline pipeline
management tasks that would otherwise require tremendous time and
effort on the part of admins. In particular, you can:

• Use Pipeline Templates and Pipeline Template Catalogs to reuse
 and share template configurations across your organization.

• Maintain CI instance consistency and reproducibility using
 Configuration as Code.

• Automatically enforce organizational and regulatory standards
 during pipeline execution through Pipeline Policies.

• Configure granular access controls using the rbac.yaml file in your
 CasC bundle or through the CloudBees Operations Center.

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 16

When you take advantage of tools like these, you gain the
ability to create, modify and share pipelines across your
organization quickly and easily. At the same time, your
developers get fast and easy access to the pipeline
configurations they need, while also benefitting from more
consistent pipeline operations and a lower risk of
disruptions to pipeline execution. And the business as a
whole gets shared services admins and developers who are
happier and more productive—a key to delivering
innovation and value to customers.

How Jenkins® Admins Can Provide Scalable CI for Software Delivery Teams 17

Contact a CloudBees CI expert today to learn how to bring
scale and manageability to your software delivery teams.

CloudBees, Inc., 4 North 2nd Street, Suite 1270 San José, CA 95113 United States
www.cloudbees.com • info@cloudbees.com

2023 CloudBees, Inc., CloudBees and the Infinity logo are registered trademarks of CloudBees, Inc.
in the United States and may be registered in other countries. Other products or brand names may

be trademarks or registered trademarks of CloudBees, Inc. or their respective holders.

Jenkins® is a registered trademark of LF Charities Inc.

