
The Definitive Guide to
Modern Software Delivery
The demands of today’s software economy are rough stuff. The first
requirement—innovating at break-neck speed—is hard enough. Add
to that fending off disruptive competitors, an ever-growing list of
regulatory frameworks, and a worldwide army of cybercriminals.
But you’re not done! Remember to continuously grow—and
satisfy—a user base that expects bug-free-and-perfectly-secure
feature rollouts almost daily. Don’t forget to contain budgets,
minimize staff, zero out inefficiencies, drive monetization, and
ensure everything you do aligns perfectly with your business
objectives. In other words, do a million things at once without
screwing any of them up. No big deal, right?

So how do you juggle all this without the whole operation
collapsing like a house of NFTs? You need to run a tight ship.
It’s your only hope. And to do that, you need a bleeding-edge
software delivery life cycle (SDLC).

2What Would a Bleeding-Edge SDLC Look Like?

What Would a
Bleeding-Edge
SDLC Look Like?
We’ll dig into specifics
shortly, but to start it’s
helpful to consider the
broad goals of a modern
SDLC. What would we need
to make the competing
demands of software
delivery not just possible,
but (almost) painless?

Working Faster
Speed to innovation, speed to market
The ideal SDLC would empower you to deliver
features to your users at the pace your business
objectives demand. This means keeping
your devs focused on innovation rather than
distractions (e.g., bugs, security fixes) so your
teams can reliably push rock-solid features into
production exactly when you want them to.

Automation
Manual processes are your worst enemy, so you’ll
want to bake automation (both for processes and
testing) into the fabric of your SDLC.

Keep it lean & mean
Also in contention for your worst enemy:
inefficiency. You do not have time or budget
to waste. You’ll need a systemic approach to
improving efficiency across your SDLC.

Scalability and resilience
You can’t rapidly grow your enterprise if the
whole thing collapses under its own weight.
Scaling resources inline with your business
objectives while avoiding waste, distractions,
and points of failure is what it’s all about.

Working Smarter
Agile—minus the friction, confusion, & inefficiency
Agile is a must, but we’d want to amplify the good (adaptability,
continuous improvement, and customer satisfaction) while
avoiding common pitfalls (communication breakdowns, tool/
process/staff bloat, and misalignments between DevOps and
business teams). Establishing “golden paths” that guide devs
through your SDLC is a crucial part of this effort.

Seamless collaboration
Agile is, in part, intended to promote collaboration and
communication within and across teams, but it tends to
produce the inverse effect. Your people—leadership, devs,
operations, practitioners, SREs, front-end and back-end
teams—need a low-effort framework for working cohesively
toward unified business objectives.

Data-driven decision-making
We’re talking about engineers here, so let’s use data—
monitoring, logging, analytics, etc.—instead of our feelings
when we decide what’s next!

Painless (but reliable) governance, security, & compliance
Making best practices in these areas ubiquitous,
mandatory, and cultural yields a laundry list of advantages
over your competitors (who are extremely unlikely to have
pulled this off).

Bringing it All Together: Maximum Visibility
To get everything above, you’re gonna need visibility into everything. If you don’t have eyes across all your teams,
tools, processes, and metrics you can’t hope to ensure those things operate in harmony to your benefit.

3Your Dream SDLC—Feature by Feature

 A complete set of organizational controls:
centralized user, team, and org management
with role-based access control—and SSO to
streamline toolchain access.

 A command-center view that allows you to
track products or releases through all SDLC
phases—you should be able to customize this
view to suit specific teams or processes.

 The capacity to dynamically track release
progress, including the various dependencies,
number of known defects, and days to
delivery. (This is critical, as it allows teams to
know where other teams stand.)

 A dashboard displaying high-level metrics for
release activities such as planning, continuous
integrations, and deployments to various
environments. Data should pull from internal
CI/CD and Release Orchestration (RO)
processes as well as external tools to instantiate
a single source of truth for your enterprise.

 Incident metrics for deployed releases
(pulling data from your preferred incident
management system).

 Insights into success rates across automation
and testing protocols.

 Feature-flag tracking (more on this below).

Your Dream
SDLC—Feature
by Feature
Now, let’s dive into the
specific features you’ll
need to incorporate into
your SDLC to reach your
modernization goals.

Centralized Visibility & Control
Let’s start with the biggest issue: your SDLC is a near-endless array of moving parts that can easily spin out of
control or grind to a halt. Your first objective is to make sure those things never happen. But that isn’t good
enough by itself: you also—on a continuous basis—need to ensure that every component of your SDLC is operating
efficiently to the maximum benefit of your business objectives. That means identifying bottlenecks, neutralizing
redundancies, accurately predicting release windows, etc.

To achieve these higher-order objectives, you must be able to observe and control your people, tools, processes,
and outcomes from a centralized POV. Whether you design your own system or implement a turnkey solution,
you’ll want your feature set to include:

Note: Many of the idealized methodologies, tools, and practices described in the following sections are either
impractical or impaired if they aren’t integrated with a global visibility/control layer encompassing your SDLC.
Developing an “all-seeing eye” for your SDLC activates powerful downstream benefits in areas as diverse as
CI/CD, RO, governance, compliance, and value-stream management.

https://www.cloudbees.com/videos/higher-order-visibility-and-management
https://www.cloudbees.com/videos/higher-order-visibility-and-management

4Your Dream SDLC—Feature by Feature

Continuous Integration/
Continuous Delivery (CI/CD)
CI/CD is the one-two punch of modern
software delivery.

Continuous integration (CI) involves integrating
code changes from multiple devs into a
shared repository as often as possible (often
multiple times a day) before subjecting them to
automated building and testing processes. The
goal is to grow your project as quickly as possible
while catching defects as early as possible.

Continuous delivery (CD) takes it from there,
using automation to usher changes through
QA, staging, approvals, and ultimately into
production (with or without human intervention,
depending on your SDLC). The aim with CD
is to ensure new features, updates, and bug
fixes make it to your customers ASAP while
minimizing manual processes—and the risk of
breaking anything.

While you definitely need CI/CD, not all
solutions are created equal. In particular, there’s
serious more-harm-than-good potential here,
since CI/CD pipelines are notoriously convoluted
and prone to breakdown. The following chart
provides some guidelines for what you should
demand of a best-practices implementation.

Things Every CI/CD Tool Should Have

Continuous Integration Continuous Delivery

Cloud native (e.g., Kubernetes) or on prem, as needed

Enterprise-grade governance, compliance, & security

Scalable across any environment

Everything as Code (EaC)

Business-class support & reliability

Access to key metrics across your entire CI/CD pipeline

Audit & compliance reports

Workload isolation for teams Unified object & data model

Visibility & management
across teams for admins

Advanced, model-based
deployments

Plugin management Automatic remediation & rollback

https://www.cloudbees.com/capabilities/continuous-integration
https://www.cloudbees.com/capabilities/continuous-delivery

5Your Dream SDLC—Feature by Feature

Automation
You are probably aware that
there aren’t a lot of looms in use
today. That’s because effective
automation always beats manual
processes. While automation
is foundational to any CI/CD
pipeline, that’s the tip of the
iceberg where SDLC efficiency is
concerned. As a rule, you’ll want to
automate just about anything that
can be safely automated.

While the specifics depend on your
SDLC and how your teams work, a
couple of guiding principles apply:

1 You’ll want the freedom
and flexibility to automate
processes that are highly
tailored to your needs

2 You’ll want to do so from
a centralized control
environment, because
automation without an
orchestration layer can’t
touch top-down approaches.
Ease of use, breadth of use,
and consistency of use are
your friends here.

Release Orchestration (RO)
Automation (CI/CD) is like turning your SDLC into a freight train. That’s great, provided your train
doesn’t go to the wrong station—or fly off the tracks! And this is a real risk, because a modern SDLC
contains an enormous number of concurrent processes. How those individual processes happen is
critical—and that’s what we’ve covered so far. But what’s even more important is making sure all these
processes operate harmoniously and to your benefit. How do you make sure the right stuff happens
at the best possible time? And how do you make sure bad stuff doesn’t happen at the worst possible
time? This is where release orchestration (RO) comes in. And “orchestration” is apt, because—if you’re
visualizing a conductor in front of an orchestra—you’re not far off.

Partly, the goal of RO is to ensure different sections of your “orchestra” (DevOps, business units, etc.)
work well, both individually and together. But, as with an orchestra, working together serves a higher
purpose. In music, the goal is to control the emotional state of the audience. In DevOps, it’s to deliver
software in a way that furthers your business objectives. CI and CD are already glued together; RO
glues CI/CD to all of the other activities involved in getting code from commit to production. To that
end, RO can involve a sprawling set of crucial tools, but any good RO implementation should include:

 End-to-end transparency—visibility,
insights, and control across all SDLC
systems

 Path-to-production view—displaying
deployment status for each stage of the
release

 Connections for “islands of
automation”—orchestration of any tool,
for any app, across any environment

 Visibility into dependencies across the
stack—management of dependencies
across applications and services and
associated pipelines and releases

 Real-time evidence collection—
straightforward auditing/reporting
across workflows

 Governed release process—ability to
map out the end-to-end release process,
knowing every task will be performed as
expected and all relevant data collected
automatically

 Automated testing—allow testing to be
done in parallel

https://www.cloudbees.com/capabilities/release-orchestration/gateway-to-modern-software-delivery-infographic

6Your Dream SDLC—Feature by Feature

Value Stream Management (VSM)
What’s the easiest way to start a fight? Put engineers and business leaders in a room to
discuss priorities. And this is why you need value stream management. VSM starts with
a shared understanding that the purpose of your SDLC is to maximize business value
and customer satisfaction. With those goals in mind, data collected across your delivery
pipelines is used to establish success metrics and KPIs for assessing value throughout
the end-to-end process (or “value stream”) through which a product, feature, or update
moves from conception to delivery. Once you have shared goals and agreed-upon
measures of success … bingo! No more fights.

VSM is your best bet for making sure engineers aren’t left out of the decision-making
process, because it gives executives insight into how their decisions impact the SDLC
while giving engineering teams the power to show how their goals and priorities deliver
concrete value to the enterprise. VSM kicks in at the planning and ideation stage and
doesn’t stop until you’ve got metrics describing application performance and customer
feedback; it’s about making sure stakeholders understand the business context and
value of any action that ripples across your SDLC. A solid VSM solution would provide:

 Analytics that reveal bottlenecks, visualize flow, and improve outcomes

 Metrics and KPIs that establish software delivery performance baselines

 Insights into deployment throughput, success rates,
and durations over time

Continuous Governance
You can’t run a tight ship if everyone onboard does whatever
they want. To avoid that, you need two things: a set of rules and
a framework for enforcing those rules. Governance is how you
bring these things to your SDLC—but this is easier said than
done. It requires the ability to map out your entire SDLC while
building the controls necessary to ensure the desired procedures
are followed, proper approvals obtained, and necessary evidence
captured (for auditing purposes) through every stage of your
delivery process. If you’re thinking you have no hope of achieving
seamless governance without a powerful RO implementation,
you’re spot-on; governance is a subdiscipline of RO. Examples of
good governance include:

 Enforcing organization-wide coding standards

 Defining and enforcing a structured
change-management process

 Formalized code review and approval processes

https://www.cloudbees.com/capabilities/value-stream-management
https://www.cloudbees.com/videos/development-consistency

7

Progressive Delivery via Feature Management
The point release represents the old way of updating
software; you add an entire set of features/fixes to your
application then cross your fingers that, on the whole,
you’re doing more good than bad (in the form of bugs,
conflicts, or security flaws). This method has fallen out
of favor for two primary reasons: users don’t benefit
from production-ready features until other unrelated
features are ready to go, and a single point of failure
can invalidate a whole host of valuable improvements.
Progressive delivery, made possible through use of
feature flags, eliminates both problems.

Progressive delivery is the process of deploying new features, updates, or fixes individually. By
attaching feature flags to individual code changes, improvements can be individually activated (or
deactivated) from a centralized control scheme. Critically, rollout can be limited to a subset of your
users. This unlocks powerful release strategies:

 Canary releases—deploy new features to a small subset of users so you can monitor impact and
address issues prior to progressively scaling availability to the rest of your users.

 Blue-green deployment—run two production environments: one with the current version and
one with an updated version. Gradually shift users from the former to the latter, rolling them
back if any issues arise.

 A/B testing—deploy multiple variations of a feature to different user subsets to compare
performance and feedback.

Analytics
It’s a given that any organization filled with engineers
should be data-driven, and one of the primary benefits of
RO is that—by tying together all the people, processes,
and tools in your SDLC—it provides timely data that can
constructively inform decision making. By collecting
data on KPIs and other relevant metrics—such as lead
time, cycle time, throughput, and work-in-progress—your
enterprise can identify areas where processes can be
improved, then track the impact of changes (good or bad)
over time. A robust analytics platform would include:

 Comprehensive pipeline visibility—dashboards and reporting functions to plan, schedule, audit,
and track pipelines, releases, and deployments (with the ability to customize as needed)

 Release command center—a bird’s-eye view of release statuses, milestone dates, dependencies,
pending approvals, test results, progress, environments, and teams involved

 Workload insights—data covering historical workload growth across demand cycles

 Plugin usage—tracking and monitoring of plugin usage across all your pipelines, upgrade
prioritization for your most-used plugins, and audit/review processes for unused plugins

 Developer metrics—analysis of code-commit trends, investment areas by type/status, etc.

Your Dream SDLC—Feature by Feature

https://www.cloudbees.com/videos/progressive-delivery
https://www.cloudbees.com/videos/intelligence-and-analytics
https://www.cloudbees.com/videos/intelligence-and-analytics

8

Continuous Security
& Compliance
No matter how good your pipeline is, if your approach to
assessing, asserting, and evidencing compliance and security are
manual, disconnected events, you’re going nowhere fast. And the
common practice of “shift left”—asking your dev teams to handle
compliance-related tasks—doesn’t make sense as a solution. Your
developers are there to drive innovation; compliance obligations,
while necessary, are a distraction from that purpose.

The solution is to integrate security and compliance tools (and
checks) into every stage of your SDLC, baking them into Release
Orchestration so you default to secure and compliant through
every DevOps process. In this scenario, compliance protocols
ensure that pipelines comply with relevant standards (GDPR, NIST,
etc.) while RO-fueled governance guarantees those protocols
are followed. Combining these complimentary solutions unlocks
serious advantages over traditional approaches:

1 Continuously assess, assert, and evidence security and
compliance across your entire SDLC

2 Automatically contextualize scanning results and provide all
teams with a clear list of required actions based on actual risk

Most importantly, built-in compliance relieves your dev teams of
having to know security and compliance in depth, while minimizing
distractions from noncritical issues. They can concentrate on high-
priority threats while making defensible decisions about what to
fix—or not—based on contextual information.

The SDLC your teams need to be their best is attainable, but how do they get it?

OPTION

A
 Roll your own using an assortment of open source or

standalone tools. Many enterprises find out the hard way that
this isn’t the optimal approach; you’ll have difficulty achieving
centralized visibility/control and you run the risk of making your
SDLC more rather than less complicated. (Because you’re ultimately
growing your tool chain using methods that lack enterprise-class
support, reliability, or scalability.)

OPTION

B
 Implement a mature platform that supports your SDLC.

Adopting a flexible, customizable platform solution designed to
optimize your unique software delivery environment helps teams
onboard and innovate faster; work more autonomously; and
maintain real-time visibility, governance, and security—while
keeping your ROI on a much shorter time horizon.

You want to deliver products to your customers faster and safer.
Implementing the ideal software delivery platform to support best practices
will get you there.

Your Dream SDLC—Feature by Feature → Living the Dream

Living the Dream

https://www.cloudbees.com/capabilities/compliance
https://www.cloudbees.com/capabilities/compliance

Continuous Integration

Continuous
Compliance Value Stream Management

Continuous Governance

Analytics

Scan
& Test

Build &
Configuration

Deploy

Release
Code &Commit

ORCHESTRATION

Feature M
anagement

Continuous Delivery

CENTRALIZED
INTELLIGENCE

Common Data Model

OPEN ECOSYSTEM
Existing Tools & Capabilities

CloudBees provides an enterprise-class experience for all of the features discussed in this guide,
so you can run a tight ship with minimal time, effort, and budget. Critically, the platform provides
compelling ROI that you should consider before building anything in-house.

The CloudBees Platform Estimated Yearly Savings with
the CloudBees Platform*

$5M/org
based on industry average of
1,000 devs organized optimally
across 142 teams (~7 users/team)

$5K/user
conservatively, during initial
phase of CloudBees rollout

2023 CloudBees, Inc., CloudBees and the Infinity logo are registered trademarks of CloudBees, Inc.
in the United States and may be registered in other countries. Other products or brand names may

be trademarks or registered trademarks of CloudBees, Inc. or their respective holders.

*Results are based on an internal study based
on business value assessments.

Reach out to us
to discuss how the

CloudBees Platform can
transform your SDLC

and your business.

https://www.cloudbees.com/contact-us

